EFDA Task Force Integrated Tokamak Modelling EUROPEAN FUSION DEVELOPMENT AGREEMENT Linking Integrated Modelling to Tokamak Control Toolbox

Motivation: realistic modelling of a Tokamak experiment

- Accurate plasma, actuators and sensors models
- Using the same control algorithms as the real experiment

Means

 Provide maximum Interoperability between the Integrated Modelling Framework and the tools used to design the Plasma Control System (PCS), typically: Simulink, Scicos

Applications

- Preparation of tokamak experiments by physicists
- Design and Test PCS algorithms with an accurate suite of plasma, actuators and sensors models
 - The PCS algorithms developed with the Modelling Framework can be plugged in directly into the real PCS of the experiment
- All these applications are geared towards ITER needs

Tokamak Plant		Tokamak Simulator	
 Plasma & plant response 		 Plasma & plant mod 	
 Real-time measurements 		 Synthetic diagnosti 	
	CONTROL toolbox Control algorithms		
 Plasma Control System 		 Plasma Control Sys Emulator 	
 Actuators 		 Actuator models 	

EFDA ITM-TF Expo "The European Integrated Modelling effort : challenges and achievements" – 38th EPS 2011 F. Imbeaux, CEA, O. Barana, CEA, C. Boulbe, U.Nice, S. Brémond, CEA, P. Huynh, CEA, P. Moreau, CEA, N. Ravenel, CEA, A. Soppelsa, C. RFX and ITM-TF contributors

dels

CS

stem

ITM-TF Approach

- The Tokamak is simulated by the Integrated Modelling Framework
 - Handles Plasma, actuator and sensor models as usual
 - PCS emulator also included as a component of the Integrated Modelling workflow
- Control algorithms are designed with standard tools of the Plasma Control community, i.e. Simulink or Scicos
- The PCS Emulator is automatically generated from Simulink/Scicos and used as a component of the Integrated Modelling Framework
- This Approach has been implemented for both Simulink and Scicos under the ITM-TF framework

The ITM-TF Approach: Scicos or Simulink control diagrams are turned into a Kepler actor (or «component») and can then be used in the Integrated Modelling workflow

Test case: ITER plasma shape control

- Control plasma shape via currents in the Poloidal Field (PF) coils • Free boundary equilibrium evolution and PF circuit equations • PID algorithm to control the PF voltages – Plasma shape characterized by « gaps »

Proof of Principle: for testing purposes, this simple tokamak simulator has been implemented in 3 ways 1. Fully under Scicos with linearized equilibrium model

(ITM-TF approach) and linearized equilibrium model

Perspectives: more complex simulations, involving more sophisticated physics (e.g. full core transport + equilibrium + PF systems evolution) and controllers (fully realistictic PCS algorithms, multiple controllers,...) [O. Barana et al, FST 2011]

2. Fully under Kepler, with controller generated from Scicos diagram 3. Fully under Kepler, with controller generated from Scicos diagram and direct use of CEDRES++ free boundary equilibrium code