ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
fprank.f
Go to the documentation of this file.
1  subroutine fprank(a,f,n,m,na,tol,c,sq,rank,aa,ff,h)
2  implicit none
3 c subroutine fprank finds the minimum norm solution of a least-
4 c squares problem in case of rank deficiency.
5 c
6 c input parameters:
7 c a : array, which contains the non-zero elements of the observation
8 c matrix after triangularization by givens transformations.
9 c f : array, which contains the transformed right hand side.
10 c n : integer,wich contains the dimension of a.
11 c m : integer, which denotes the bandwidth of a.
12 c tol : real value, giving a threshold to determine the rank of a.
13 c
14 c output parameters:
15 c c : array, which contains the minimum norm solution.
16 c sq : real value, giving the contribution of reducing the rank
17 c to the sum of squared residuals.
18 c rank : integer, which contains the rank of matrix a.
19 c
20 c ..scalar arguments..
21  integer n,m,na,rank
22  real*8 tol,sq
23 c ..array arguments..
24  real*8 a(na,m),f(n),c(n),aa(n,m),ff(n),h(m)
25 c ..local scalars..
26  integer i,ii,ij,i1,i2,j,jj,j1,j2,j3,k,kk,m1,nl
27  real*8 cos,fac,piv,sin,yi
28  double precision store,stor1,stor2,stor3
29 c ..function references..
30  integer min0
31 c ..subroutine references..
32 c fpgivs,fprota
33 c ..
34  m1 = m-1
35 c the rank deficiency nl is considered to be the number of sufficient
36 c small diagonal elements of a.
37  nl = 0
38  sq = 0.
39  do 90 i=1,n
40  if(a(i,1).gt.tol) go to 90
41 c if a sufficient small diagonal element is found, we put it to
42 c zero. the remainder of the row corresponding to that zero diagonal
43 c element is then rotated into triangle by givens rotations .
44 c the rank deficiency is increased by one.
45  nl = nl+1
46  if(i.eq.n) go to 90
47  yi = f(i)
48  do 10 j=1,m1
49  h(j) = a(i,j+1)
50  10 continue
51  h(m) = 0.
52  i1 = i+1
53  do 60 ii=i1,n
54  i2 = min0(n-ii,m1)
55  piv = h(1)
56  if(piv.eq.0.) go to 30
57  call fpgivs(piv,a(ii,1),cos,sin)
58  call fprota(cos,sin,yi,f(ii))
59  if(i2.eq.0) go to 70
60  do 20 j=1,i2
61  j1 = j+1
62  call fprota(cos,sin,h(j1),a(ii,j1))
63  h(j) = h(j1)
64  20 continue
65  go to 50
66  30 if(i2.eq.0) go to 70
67  do 40 j=1,i2
68  h(j) = h(j+1)
69  40 continue
70  50 h(i2+1) = 0.
71  60 continue
72 c add to the sum of squared residuals the contribution of deleting
73 c the row with small diagonal element.
74  70 sq = sq+yi**2
75  90 continue
76 c rank denotes the rank of a.
77  rank = n-nl
78 c let b denote the (rank*n) upper trapezoidal matrix which can be
79 c obtained from the (n*n) upper triangular matrix a by deleting
80 c the rows and interchanging the columns corresponding to a zero
81 c diagonal element. if this matrix is factorized using givens
82 c transformations as b = (r) (u) where
83 c r is a (rank*rank) upper triangular matrix,
84 c u is a (rank*n) orthonormal matrix
85 c then the minimal least-squares solution c is given by c = b' v,
86 c where v is the solution of the system (r) (r)' v = g and
87 c g denotes the vector obtained from the old right hand side f, by
88 c removing the elements corresponding to a zero diagonal element of a.
89 c initialization.
90  do 100 i=1,rank
91  do 100 j=1,m
92  aa(i,j) = 0.
93  100 continue
94 c form in aa the upper triangular matrix obtained from a by
95 c removing rows and columns with zero diagonal elements. form in ff
96 c the new right hand side by removing the elements of the old right
97 c hand side corresponding to a deleted row.
98  ii = 0
99  do 120 i=1,n
100  if(a(i,1).le.tol) go to 120
101  ii = ii+1
102  ff(ii) = f(i)
103  aa(ii,1) = a(i,1)
104  jj = ii
105  kk = 1
106  j = i
107  j1 = min0(j-1,m1)
108  if(j1.eq.0) go to 120
109  do 110 k=1,j1
110  j = j-1
111  if(a(j,1).le.tol) go to 110
112  kk = kk+1
113  jj = jj-1
114  aa(jj,kk) = a(j,k+1)
115  110 continue
116  120 continue
117 c form successively in h the columns of a with a zero diagonal element.
118  ii = 0
119  do 200 i=1,n
120  ii = ii+1
121  if(a(i,1).gt.tol) go to 200
122  ii = ii-1
123  if(ii.eq.0) go to 200
124  jj = 1
125  j = i
126  j1 = min0(j-1,m1)
127  do 130 k=1,j1
128  j = j-1
129  if(a(j,1).le.tol) go to 130
130  h(jj) = a(j,k+1)
131  jj = jj+1
132  130 continue
133  do 140 kk=jj,m
134  h(kk) = 0.
135  140 continue
136 c rotate this column into aa by givens transformations.
137  jj = ii
138  do 190 i1=1,ii
139  j1 = min0(jj-1,m1)
140  piv = h(1)
141  if(piv.ne.0.) go to 160
142  if(j1.eq.0) go to 200
143  do 150 j2=1,j1
144  j3 = j2+1
145  h(j2) = h(j3)
146  150 continue
147  go to 180
148  160 call fpgivs(piv,aa(jj,1),cos,sin)
149  if(j1.eq.0) go to 200
150  kk = jj
151  do 170 j2=1,j1
152  j3 = j2+1
153  kk = kk-1
154  call fprota(cos,sin,h(j3),aa(kk,j3))
155  h(j2) = h(j3)
156  170 continue
157  180 jj = jj-1
158  h(j3) = 0.
159  190 continue
160  200 continue
161 c solve the system (aa) (f1) = ff
162  ff(rank) = ff(rank)/aa(rank,1)
163  i = rank-1
164  if(i.eq.0) go to 230
165  do 220 j=2,rank
166  store = ff(i)
167  i1 = min0(j-1,m1)
168  k = i
169  do 210 ii=1,i1
170  k = k+1
171  stor1 = ff(k)
172  stor2 = aa(i,ii+1)
173  store = store-stor1*stor2
174  210 continue
175  stor1 = aa(i,1)
176  ff(i) = store/stor1
177  i = i-1
178  220 continue
179 c solve the system (aa)' (f2) = f1
180  230 ff(1) = ff(1)/aa(1,1)
181  if(rank.eq.1) go to 260
182  do 250 j=2,rank
183  store = ff(j)
184  i1 = min0(j-1,m1)
185  k = j
186  do 240 ii=1,i1
187  k = k-1
188  stor1 = ff(k)
189  stor2 = aa(k,ii+1)
190  store = store-stor1*stor2
191  240 continue
192  stor1 = aa(j,1)
193  ff(j) = store/stor1
194  250 continue
195 c premultiply f2 by the transpoze of a.
196  260 k = 0
197  do 280 i=1,n
198  store = 0.
199  if(a(i,1).gt.tol) k = k+1
200  j1 = min0(i,m)
201  kk = k
202  ij = i+1
203  do 270 j=1,j1
204  ij = ij-1
205  if(a(ij,1).le.tol) go to 270
206  stor1 = a(ij,j)
207  stor2 = ff(kk)
208  store = store+stor1*stor2
209  kk = kk-1
210  270 continue
211  c(i) = store
212  280 continue
213 c add to the sum of squared residuals the contribution of putting
214 c to zero the small diagonal elements of matrix (a).
215  stor3 = 0.
216  do 310 i=1,n
217  if(a(i,1).gt.tol) go to 310
218  store = f(i)
219  i1 = min0(n-i,m1)
220  if(i1.eq.0) go to 300
221  do 290 j=1,i1
222  ij = i+j
223  stor1 = c(ij)
224  stor2 = a(i,j+1)
225  store = store-stor1*stor2
226  290 continue
227  300 fac = a(i,1)*c(i)
228  stor1 = a(i,1)
229  stor2 = c(i)
230  stor1 = stor1*stor2
231  stor3 = stor3+stor1*(stor1-store-store)
232  310 continue
233  fac = stor3
234  sq = sq+fac
235  return
236  end
237 
subroutine fprota(cos, sin, a, b)
Definition: fprota.f:1
subroutine fprank(a, f, n, m, na, tol, c, sq, rank, aa, ff, h)
Definition: fprank.f:1
subroutine fpgivs(piv, ww, cos, sin)
Definition: fpgivs.f:1