ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
mod_spline.f90
Go to the documentation of this file.
1 module mod_spline
2 
3  use itm_types
4  use mod_profiles
5 
6  implicit none
7 
8  type(spline_coefficients) :: q_spline, p_spline, rbphi_spline
9 
10 contains
11 
12  subroutine evaluate_spline(p, x, x_new, f_new, error, fprime_new)
13 !-----------------------------------------------------------------------
14 ! input:
15 !
16 ! p arrays of spline coefficients (from spline)
17 ! x array of knots for splines
18 ! x_new array of knots at which the spline should be evaluated
19 !
20 ! output:
21 !
22 ! f_new array of interpolated values
23 ! fprime_new array of interpolated first derivatives
24 ! error error code (0 = no error)
25 !-----------------------------------------------------------------------
26 
27  use itm_types
28 
29  implicit none
30 
31  type(spline_coefficients), intent(in) :: p
32  real(r8), intent(in) :: x(:), x_new(:)
33  real(r8), intent(inout) :: f_new(:)
34  real(r8), intent(inout), optional :: fprime_new(:)
35  integer(itm_i4), intent(out) :: error
36 
37  real(r8) :: x_loc(size(x))
38  real(r8) :: x_new_loc(size(x_new))
39  real(r8) :: xx, xwert_loc
40  integer(itm_i4) :: i, j, k, m
41  logical :: inverted
42 
43  error = 1
44 
45 !-- dimension checks
46  if (size(x) /= size(p%sp1) .or. size(x_new) /= size(f_new)) then
47  error = 1
48  return
49  end if
50 
51  if (present(fprime_new)) then
52  if (size(x_new) /= size(fprime_new)) then
53  error = 1
54  return
55  end if
56  end if
57 
58 !-- check whether abscissa has to be inverted
59  if (x(size(x)) < x(1)) then
60  inverted = .true.
61  else
62  inverted = .false.
63  end if
64 
65 !-- invert abscissa if necessary
66  if (inverted) then
67  x_loc = -x
68  x_new_loc = -x_new
69  else
70  x_loc = x
71  x_new_loc = x_new
72  end if
73 
74  xwert_loc = x_new_loc(1)
75 
76 !-- find matching interval (binary search)
77  i = 1
78  k = size(x_loc)
79 
80  m = (i + k) / 2
81 
82  do
83  if (m == i) exit
84  if (xwert_loc < x_loc(m)) then
85  k = m
86  else
87  i = m
88  end if
89  m = (i + k) / 2
90  end do
91 
92  xx = xwert_loc - x_loc(i)
93  f_new(1) = ((p%sp4(i) * xx + p%sp3(i)) * xx + p%sp2(i)) * xx + p%sp1(i)
94 
95  if (present(fprime_new)) &
96  fprime_new(1) = (3.0_r8 * p%sp4(i) * xx + 2.0_r8 * p%sp3(i)) * xx &
97  + p%sp2(i)
98 
99  do j = 2, size(x_new)
100  xwert_loc = x_new_loc(j)
101 
102  do while (x_loc(k) <= xwert_loc)
103  if (k == size(x_loc)) exit
104  k = k + 1
105  i = i + 1
106  end do
107 
108  xx = xwert_loc - x_loc(i)
109  f_new(j) = ((p%sp4(i) * xx + p%sp3(i)) * xx + p%sp2(i)) * xx + p%sp1(i)
110 
111  if (present(fprime_new)) &
112  fprime_new(j) = (3.0_r8 * p%sp4(i) * xx + 2.0_r8 * p%sp3(i)) * xx &
113  + p%sp2(i)
114  end do
115 
116 !-- adapt derivative if necessary
117  if (inverted .and. present(fprime_new)) then
118  fprime_new = -fprime_new
119  end if
120 
121  return
122 
123  end subroutine evaluate_spline
124 
125 end module mod_spline
126 
real(r8) function p(a, x, xr, xs, yr, ys, psi, psir, F_dia)
subroutine evaluate_spline(p, x, x_new, f_new, error, fprime_new)
Definition: mod_spline.f90:12