ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
avint.f90
Go to the documentation of this file.
1 subroutine avint ( ntab, xtab, ytab, a, b, result )
2  USE itm_types, only : r8
3 
4 ! obtained from
5 ! http://people.sc.fsu.edu/~jburkardt/f_src/intlib/intlib.html
6 
7 !*****************************************************************************80
8 !
9 !! AVINT estimates the integral of unevenly spaced data.
10 !
11 ! Discussion:
12 !
13 ! The data is given as NTAB pairs of values
14 ! ( XTAB(1:NTAB), YTAB(1:NTAB) ).
15 !
16 ! The quadrature method uses overlapping parabolas and smoothing.
17 !
18 ! Modified:
19 !
20 ! 10 February 2006
21 !
22 ! Reference:
23 !
24 ! Philip Davis, Philip Rabinowitz,
25 ! Methods of Numerical Integration,
26 ! Second Edition,
27 ! Dover, 2007,
28 ! ISBN: 0486453391,
29 ! LC: QA299.3.D28.
30 !
31 ! Paul Hennion,
32 ! Algorithm 77:
33 ! Interpolation, Differentiation and Integration,
34 ! Communications of the ACM,
35 ! Volume 5, page 96, 1962.
36 !
37 ! Parameters:
38 !
39 ! Input, integer NTAB, the number of entries in XTAB and
40 ! YTAB. NTAB must be at least 2.
41 !
42 ! Input, real (R8) XTAB(NTAB), the abscissas at which the
43 ! function values are given. The XTAB's must be distinct
44 ! and in ascending order.
45 !
46 ! Input, real (R8) YTAB(NTAB), the function values,
47 ! YTAB(I) = F(XTAB(I)).
48 !
49 ! Input, real (R8) A, the lower limit of integration. A should
50 ! be, but need not be, near one endpoint of the interval
51 ! (X(1), X(NTAB)).
52 !
53 ! Input, real (R8) B, the upper limit of integration. B should
54 ! be, but need not be, near one endpoint of the interval
55 ! (X(1), X(NTAB)).
56 !
57 ! Output, real (R8) RESULT, the approximate value of the integral.
58 !
59  implicit none
60 
61  integer ntab
62 
63  real (R8) a
64  real (R8) b
65  real (R8) ba
66  real (R8) bb
67  real (R8) bc
68  real (R8) ca
69  real (R8) cb
70  real (R8) cc
71  real (R8) fa
72  real (R8) fb
73  integer i
74  integer inlft
75  integer inrt
76  integer istart
77  integer istop
78  real (R8) result
79  real (R8) slope
80  real (R8) syl
81  real (R8) syl2
82  real (R8) syl3
83  real (R8) syu
84  real (R8) syu2
85  real (R8) syu3
86  real (R8) term1
87  real (R8) term2
88  real (R8) term3
89  real (R8) total
90  real (R8) x1
91  real (R8) x12
92  real (R8) x13
93  real (R8) x2
94  real (R8) x23
95  real (R8) x3
96  real (R8) xtab(ntab)
97  real (R8) ytab(ntab)
98 
99  result = 0.0_r8
100 
101  if ( a == b ) then
102  return
103  end if
104 
105  if ( b < a ) then
106  end if
107 
108  if ( ntab < 2 ) then
109  write ( *, '(a)' ) ' '
110  write ( *, '(a)' ) 'AVINT - Fatal error!'
111  write ( *, '(a,i8)' ) ' NTAB is less than 3. NTAB = ', ntab
112  stop
113  end if
114 
115  do i = 2, ntab
116 
117  if ( xtab(i) <= xtab(i-1) ) then
118  write ( *, '(a)' ) ' '
119  write ( *, '(a)' ) 'AVINT - Fatal error!'
120  write ( *, '(a)' ) ' XTAB(I) is not greater than XTAB(I-1).'
121  write ( *, '(a,i8)' ) ' Here, I = ', i
122  write ( *, '(a,g14.6)' ) ' XTAB(I-1) = ', xtab(i-1)
123  write ( *, '(a,g14.6)' ) ' XTAB(I) = ', xtab(i)
124  stop
125  end if
126 
127  end do
128 !
129 ! Special case for NTAB = 2.
130 !
131  if ( ntab == 2 ) then
132  slope = ( ytab(2) - ytab(1) ) / ( xtab(2) - xtab(1) )
133  fa = ytab(1) + slope * ( a - xtab(1) )
134  fb = ytab(2) + slope * ( b - xtab(2) )
135  result = 0.5_r8 * ( fa + fb ) * ( b - a )
136  return
137  end if
138 
139  if ( xtab(ntab-2) < a .or. b < xtab(3) ) then
140  write ( *, '(a)' ) ' '
141  write ( *, '(a)' ) 'AVINT - Fatal error!'
142  write ( *, '(a)' ) ' There were less than 3 function values'
143  write ( *, '(a)' ) ' between the limits of integration.'
144  stop
145  end if
146 
147  i = 1
148  do
149 
150  if ( a <= xtab(i) ) then
151  exit
152  end if
153 
154  i = i + 1
155 
156  end do
157 
158  inlft = i
159 
160  i = ntab
161 
162  do
163 
164  if ( xtab(i) <= b ) then
165  exit
166  end if
167 
168  i = i - 1
169 
170  end do
171 
172  inrt = i
173 
174  if ( inrt - inlft < 2 ) then
175  write ( *, '(a)' ) ' '
176  write ( *, '(a)' ) 'AVINT - Fatal error!'
177  write ( *, '(a)' ) ' There were less than 3 function values'
178  write ( *, '(a)' ) ' between the limits of integration.'
179  stop
180  end if
181 
182  if ( inlft == 1 ) then
183  istart = 2
184  else
185  istart = inlft
186  end if
187 
188  if ( inrt == ntab ) then
189  istop = ntab - 1
190  else
191  istop = inrt
192  end if
193 
194  total = 0.0_r8
195 
196  syl = a
197  syl2 = syl * syl
198  syl3 = syl2 * syl
199 
200  do i = istart, istop
201 
202  x1 = xtab(i-1)
203  x2 = xtab(i)
204  x3 = xtab(i+1)
205 
206  x12 = x1 - x2
207  x13 = x1 - x3
208  x23 = x2 - x3
209 
210  term1 = ( ytab(i-1) ) / ( x12 * x13 )
211  term2 = - ( ytab(i) ) / ( x12 * x23 )
212  term3 = ( ytab(i+1) ) / ( x13 * x23 )
213 
214  ba = term1 + term2 + term3
215  bb = - ( x2 + x3 ) * term1 - ( x1 + x3 ) * term2 - ( x1 + x2 ) * term3
216  bc = x2 * x3 * term1 + x1 * x3 * term2 + x1 * x2 * term3
217 
218  if ( i == istart ) then
219  ca = ba
220  cb = bb
221  cc = bc
222  else
223  ca = 0.5_r8 * ( ba + ca )
224  cb = 0.5_r8 * ( bb + cb )
225  cc = 0.5_r8 * ( bc + cc )
226  end if
227 
228  syu = x2
229  syu2 = syu * syu
230  syu3 = syu2 * syu
231 
232  total = total + ca * ( syu3 - syl3 ) / 3.0_r8 &
233  + cb * ( syu2 - syl2 ) / 2.0_r8 &
234  + cc * ( syu - syl )
235  ca = ba
236  cb = bb
237  cc = bc
238 
239  syl = syu
240  syl2 = syu2
241  syl3 = syu3
242 
243  end do
244 
245  syu = b
246  syu2 = syu * syu
247  syu3 = syu2 * syu
248 
249  result = total + ca * ( syu3 - syl3 ) / 3.0_r8 &
250  + cb * ( syu2 - syl2 ) / 2.0_r8 &
251  + cc * ( syu - syl )
252 
253  return
254 end
subroutine avint(ntab, xtab, ytab, a, b, result)
Definition: avint.f90:1