ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
parder.f
Go to the documentation of this file.
1  subroutine parder(tx,nx,ty,ny,c,kx,ky,nux,nuy,x,mx,y,my,z,
2  * wrk,lwrk,iwrk,kwrk,ier)
3  implicit none
4 c subroutine parder evaluates on a grid (x(i),y(j)),i=1,...,mx; j=1,...
5 c ,my the partial derivative ( order nux,nuy) of a bivariate spline
6 c s(x,y) of degrees kx and ky, given in the b-spline representation.
7 c
8 c calling sequence:
9 c call parder(tx,nx,ty,ny,c,kx,ky,nux,nuy,x,mx,y,my,z,wrk,lwrk,
10 c * iwrk,kwrk,ier)
11 c
12 c input parameters:
13 c tx : real array, length nx, which contains the position of the
14 c knots in the x-direction.
15 c nx : integer, giving the total number of knots in the x-direction
16 c ty : real array, length ny, which contains the position of the
17 c knots in the y-direction.
18 c ny : integer, giving the total number of knots in the y-direction
19 c c : real array, length (nx-kx-1)*(ny-ky-1), which contains the
20 c b-spline coefficients.
21 c kx,ky : integer values, giving the degrees of the spline.
22 c nux : integer values, specifying the order of the partial
23 c nuy derivative. 0<=nux<kx, 0<=nuy<ky.
24 c x : real array of dimension (mx).
25 c before entry x(i) must be set to the x co-ordinate of the
26 c i-th grid point along the x-axis.
27 c tx(kx+1)<=x(i-1)<=x(i)<=tx(nx-kx), i=2,...,mx.
28 c mx : on entry mx must specify the number of grid points along
29 c the x-axis. mx >=1.
30 c y : real array of dimension (my).
31 c before entry y(j) must be set to the y co-ordinate of the
32 c j-th grid point along the y-axis.
33 c ty(ky+1)<=y(j-1)<=y(j)<=ty(ny-ky), j=2,...,my.
34 c my : on entry my must specify the number of grid points along
35 c the y-axis. my >=1.
36 c wrk : real array of dimension lwrk. used as workspace.
37 c lwrk : integer, specifying the dimension of wrk.
38 c lwrk >= mx*(kx+1-nux)+my*(ky+1-nuy)+(nx-kx-1)*(ny-ky-1)
39 c iwrk : integer array of dimension kwrk. used as workspace.
40 c kwrk : integer, specifying the dimension of iwrk. kwrk >= mx+my.
41 c
42 c output parameters:
43 c z : real array of dimension (mx*my).
44 c on succesful exit z(my*(i-1)+j) contains the value of the
45 c specified partial derivative of s(x,y) at the point
46 c (x(i),y(j)),i=1,...,mx;j=1,...,my.
47 c ier : integer error flag
48 c ier=0 : normal return
49 c ier=10: invalid input data (see restrictions)
50 c
51 c restrictions:
52 c mx >=1, my >=1, 0 <= nux < kx, 0 <= nuy < ky, kwrk>=mx+my
53 c lwrk>=mx*(kx+1-nux)+my*(ky+1-nuy)+(nx-kx-1)*(ny-ky-1),
54 c tx(kx+1) <= x(i-1) <= x(i) <= tx(nx-kx), i=2,...,mx
55 c ty(ky+1) <= y(j-1) <= y(j) <= ty(ny-ky), j=2,...,my
56 c
57 c other subroutines required:
58 c fpbisp,fpbspl
59 c
60 c references :
61 c de boor c : on calculating with b-splines, j. approximation theory
62 c 6 (1972) 50-62.
63 c dierckx p. : curve and surface fitting with splines, monographs on
64 c numerical analysis, oxford university press, 1993.
65 c
66 c author :
67 c p.dierckx
68 c dept. computer science, k.u.leuven
69 c celestijnenlaan 200a, b-3001 heverlee, belgium.
70 c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
71 c
72 c latest update : march 1989
73 c
74 c ..scalar arguments..
75  integer nx,ny,kx,ky,nux,nuy,mx,my,lwrk,kwrk,ier
76 c ..array arguments..
77  integer iwrk(kwrk)
78  real*8 tx(nx),ty(ny),c((nx-kx-1)*(ny-ky-1)),x(mx),y(my),z(mx*my),
79  * wrk(lwrk)
80 c ..local scalars..
81  integer i,iwx,iwy,j,kkx,kky,kx1,ky1,lx,ly,lwest,l1,l2,m,m0,m1,
82  * nc,nkx1,nky1,nxx,nyy
83  real*8 ak,fac
84 c ..
85 c before starting computations a data check is made. if the input data
86 c are invalid control is immediately repassed to the calling program.
87  ier = 10
88  kx1 = kx+1
89  ky1 = ky+1
90  nkx1 = nx-kx1
91  nky1 = ny-ky1
92  nc = nkx1*nky1
93  if(nux.lt.0 .or. nux.ge.kx) go to 400
94  if(nuy.lt.0 .or. nuy.ge.ky) go to 400
95  lwest = nc +(kx1-nux)*mx+(ky1-nuy)*my
96  if(lwrk.lt.lwest) go to 400
97  if(kwrk.lt.(mx+my)) go to 400
98  if(mx-1) 400,30,10
99  10 do 20 i=2,mx
100  if(x(i).lt.x(i-1)) go to 400
101  20 continue
102  30 if(my-1) 400,60,40
103  40 do 50 i=2,my
104  if(y(i).lt.y(i-1)) go to 400
105  50 continue
106  60 ier = 0
107  nxx = nkx1
108  nyy = nky1
109  kkx = kx
110  kky = ky
111 c the partial derivative of order (nux,nuy) of a bivariate spline of
112 c degrees kx,ky is a bivariate spline of degrees kx-nux,ky-nuy.
113 c we calculate the b-spline coefficients of this spline
114  do 70 i=1,nc
115  wrk(i) = c(i)
116  70 continue
117  if(nux.eq.0) go to 200
118  lx = 1
119  do 100 j=1,nux
120  ak = kkx
121  nxx = nxx-1
122  l1 = lx
123  m0 = 1
124  do 90 i=1,nxx
125  l1 = l1+1
126  l2 = l1+kkx
127  fac = tx(l2)-tx(l1)
128  if(fac.le.0.) go to 90
129  do 80 m=1,nyy
130  m1 = m0+nyy
131  wrk(m0) = (wrk(m1)-wrk(m0))*ak/fac
132  m0 = m0+1
133  80 continue
134  90 continue
135  lx = lx+1
136  kkx = kkx-1
137  100 continue
138  200 if(nuy.eq.0) go to 300
139  ly = 1
140  do 230 j=1,nuy
141  ak = kky
142  nyy = nyy-1
143  l1 = ly
144  do 220 i=1,nyy
145  l1 = l1+1
146  l2 = l1+kky
147  fac = ty(l2)-ty(l1)
148  if(fac.le.0.) go to 220
149  m0 = i
150  do 210 m=1,nxx
151  m1 = m0+1
152  wrk(m0) = (wrk(m1)-wrk(m0))*ak/fac
153  m0 = m0+nky1
154  210 continue
155  220 continue
156  ly = ly+1
157  kky = kky-1
158  230 continue
159  m0 = nyy
160  m1 = nky1
161  do 250 m=2,nxx
162  do 240 i=1,nyy
163  m0 = m0+1
164  m1 = m1+1
165  wrk(m0) = wrk(m1)
166  240 continue
167  m1 = m1+nuy
168  250 continue
169 c we partition the working space and evaluate the partial derivative
170  300 iwx = 1+nxx*nyy
171  iwy = iwx+mx*(kx1-nux)
172  call fpbisp(tx(nux+1),nx-2*nux,ty(nuy+1),ny-2*nuy,wrk,kkx,kky,
173  * x,mx,y,my,z,wrk(iwx),wrk(iwy),iwrk(1),iwrk(mx+1))
174  400 return
175  end
176 
subroutine parder(tx, nx, ty, ny, c, kx, ky, nux, nuy, x, mx, y, my, z, wrk, lwrk, iwrk, kwrk, ier)
Definition: parder.f:1
subroutine fpbisp(tx, nx, ty, ny, c, kx, ky, x, mx, y, my, z, wx, wy, lx, ly)
Definition: fpbisp.f:1