ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
math_functions.f90
Go to the documentation of this file.
2 
3  use itm_types
4  use mod_parameter, only : twopi
5  use mod_profiles
6 
7  implicit none
8 
9  private :: integrate_over_hermite_element, integrate_along_hermite_element
10  public :: integrate, root, quad_equation
12  public :: equidistant_profile
13 
14  contains
15 
16 !---------------------------------------------------------------------------
17  function integrate(f_spline, x, n, inv) result(g)
18 !---------------------------------------------------------------------------
19 ! integrates the function f defined by f_spline(1 : n) on the grid points
20 ! x(1 : n)
21 ! returns: g(1:n) with
22 ! g(i) = integral of f from 1 to i for inv = .false and
23 ! from n to i for inv = .true.
24 !---------------------------------------------------------------------------
25 
26  use itm_types
27  use helena_spline
28 
29  implicit none
30 
31  type(spline_coefficients) :: f_spline
32  real(r8), dimension(n), intent(in) :: x
33  real(r8), dimension(n) :: g
34  integer(itm_i4), intent(in) :: n
35  logical :: inv
36 
37  real(r8), dimension(3) :: ablt
38  integer(itm_i4) :: i
39 
40  g = 0._r8
41 
42  do i = 2, n
43  if (inv) then
44  g(n + 1 - i) = g(n + 2 - i) + (spwert(n, x(n + 2 - i), f_spline, x, &
45  ablt, 0) + spwert(n, x(n + 1 - i), f_spline, x, ablt, 0)) &
46  * (x(n + 1 - i) - x(n + 2 - i)) / 2._r8
47  else
48  g(i) = g(i - 1) + (spwert(n, x(i - 1), f_spline, x, ablt, 0) &
49  + spwert(n, x(i), f_spline, x, ablt, 0)) * (x(i) - x(i - 1)) &
50  / 2._r8
51  end if
52  end do
53 
54  end function integrate
55 
56 !---------------------------------------------------------------------------
57  function integrate_1d(f, x, x_low, x_high, sum) result(integral)
58 !---------------------------------------------------------------------------
59 ! integrates the function f(1:n) given on grid points x(1:n) from
60 ! x1 to x2
61 ! It assumes that x be monotonically increasing.
62 ! If sum == .true., the integration is done through a simple summation,
63 ! else via linear quadrature.
64 ! returns: integral
65 !---------------------------------------------------------------------------
66 
67  use itm_types
68 
69  implicit none
70 
71  real(r8), intent(in) :: f(:), x(:)
72  real(r8), intent(in) :: x_low, x_high
73  logical, intent(in) :: sum
74 
75  integer(itm_i4), parameter :: iu6 = 6
76 
77  real(r8) :: integral
78  real(r8) :: f_x1, f_x2, x1, x2
79  integer(itm_i4) :: i, i_x1, i_x2
80  logical :: inv
81 
82  if (size(f) /= size(x)) then
83  write(iu6, *) 'Error in integrate_1d: Array sizes do not agree!'
84  stop
85  end if
86 
87  if (x_low > x_high) then ! inverted integral
88  x1 = x_high
89  x2 = x_low
90  inv = .true.
91  else
92  x1 = x_low
93  x2 = x_high
94  inv = .false.
95  end if
96 
97 !-- find neighbouring nodes
98  i_x1 = 1
99  i_x2 = 1
100  do i = 1, size(x)
101  if (x1 >= x(i)) i_x1 = i
102  if (x2 >= x(i)) i_x2 = i
103  end do
104 !-- f(i) assigned to interval x(i - 1) .. x(i) for sum == .true.
105 
106  integral = 0._r8
107 
108  if (.not. x1 == x2) then
109 !-- linear interpolations for f(x1) and f(x2)
110  if (i_x1 == size(x)) then
111  f_x1 = f(size(x))
112  else
113  if (sum) then
114  f_x1 = f(i_x1 + 1)
115  else
116  f_x1 = f(i_x1) + (x1 - x(i_x1)) * (f(i_x1 + 1) - f(i_x1)) &
117  / (x(i_x1 + 1) - x(i_x1))
118  end if
119  end if
120  if (i_x2 == size(x)) then
121  f_x2 = f(size(x))
122  else
123  if (sum) then
124  f_x2 = f(i_x2 + 1)
125  else
126  f_x2 = f(i_x2) + (x2 - x(i_x2)) * (f(i_x2 + 1) - f(i_x2)) &
127  / (x(i_x2 + 1) - x(i_x2))
128  end if
129  end if
130 !-- linear quadrature or simple sum
131  if (i_x1 == i_x2) then
132  integral = integral + 0.5_r8 * (f_x1 + f_x2) * (x(i_x2) - x(i_x1))
133  else
134  if (sum) then
135  integral = integral + f_x1 * (x(i_x1) - x1)
136  else
137  integral = integral + 0.5_r8 * (f_x1 + f(i_x1 + 1)) &
138  * (x(i_x1 + 1) - x1)
139  end if
140  do i = i_x1 + 1, i_x2 - 1
141  if (sum) then
142  integral = integral + f(i) * (x(i) - x(i - 1))
143  else
144  integral = integral + 0.5_r8 * (f(i) + f(i + 1)) &
145  * (x(i + 1) - x(i))
146  end if
147  end do
148  if (sum) then
149  integral = integral + f(i_x2) * (x(i_x2) - x(i_x2 - 1))
150  integral = integral + f_x2 * (x2 - x(i_x2))
151  else
152  integral = integral + 0.5_r8 * (f(i_x2) + f_x2) &
153  * (x2 - x(i_x2))
154  end if
155  end if
156  end if
157 
158  if (inv) integral = -integral
159 
160  end function integrate_1d
161 
162 !---------------------------------------------------------------------------
163  subroutine equidistant_profile(f, x, f_equi, x_equi)
164 !---------------------------------------------------------------------------
165 ! This subroutine takes a function f(x), defined on the array x (not
166 ! necessarily equidistant), interpolates it and returns the
167 ! function f_equi(x_equi) on an equidistant grid x_equi spanning the range
168 ! of x
169 ! requires that x be monotonically increasing
170 !---------------------------------------------------------------------------
171  use mod_profiles
172  use helena_spline
173 
174  implicit none
175 
176  real(r8), intent(in) :: f(:)
177  real(r8), intent(inout) :: x(:)
178  real(r8), intent(out) :: f_equi(:), x_equi(:)
179 
180  type(spline_coefficients) :: f_spline
181  real(r8) :: abltg(3)
182  integer(itm_i4) :: i
183 
184  if (size(f) /= size(x) .or. size(f_equi) /= size(x_equi)) then
185  stop 'Error in equidistant_profile: Array sizes do not agree!'
186  end if
187 
188  call allocate_spline_coefficients(f_spline, size(f))
189 
190  call spline(size(f), x, f, 0._r8, 0._r8, 2, f_spline)
191 
192  do i = 1, size(f_equi)
193  x_equi(i) = x(1) + dble(i - 1) / dble(size(f_equi) - 1) &
194  * (x(size(x)) - x(1))
195  f_equi(i) = spwert(size(f), x_equi(i), f_spline, x, abltg, 0)
196  end do
197 
198  call deallocate_spline_coefficients(f_spline)
199 
200  end subroutine equidistant_profile
201 
202 !---------------------------------------------------------------------------
203  function root(a, b, c, d, sgn) result(f_root)
204 !---------------------------------------------------------------------------
205 ! this function gives better roots of quadratics by avoiding
206 ! cancellation of smaller root
207 !---------------------------------------------------------------------------
208 
209  implicit none
210 
211  real(r8) :: a, b, c, d, sgn
212  real(r8) :: f_root
213 
214  if (b * sgn >= 0.0) then
215  f_root = -2.0_r8 * c / (b + sgn * sqrt(d))
216  else
217  f_root = (-b + sgn * sqrt(d)) / (2.0_r8 * a)
218  end if
219 
220  end function root
221 
222 !---------------------------------------------------------------------------
223  function integrate_over_hermite_element(i, j, a, F_dia, func, volume) &
224  result(f_integral)
225 !---------------------------------------------------------------------------
226 ! This function integrates the quantity described by the function func over
227 ! the Hermite element with index i,j.
228 ! volume = .true. : volume integral
229 ! = .false. : surface integral
230 !---------------------------------------------------------------------------
231  use mod_dat, only : eps
232  use mod_gauss
234  use mod_mesh
236  use mod_parameter, only : twopi
237 
238  implicit none
239 
240  integer(itm_i4), intent(in) :: i, j
241  real(r8), intent(in) :: a, f_dia
242  logical :: volume
243 
244  real(r8) :: f_integral
245 
246  real(r8) :: r, wr, s, ws
247  real(r8) :: x, xr, xs, xrs, xrr, xss
248  real(r8) :: y, yr, ys, yrs, yrr, yss
249  real(r8) :: ps, psr, pss, psrs, psrr, psss
250  real(r8) :: xjac, major_radius
251  integer(itm_i4) :: ngr, ngs
252  integer(itm_i4) :: nelm
253  integer(itm_i4) :: n1, n2, n3, n4
254 
255  real(r8), external:: func
256 
257  f_integral = 0._r8
258 
259  nelm = (i - 1) * (np - 1) + j
260  call set_node_number(nelm, n1, n2, n3, n4)
261 !---------------------------------- 4 point gaussian integration in r -----
262  do ngr = 1, 4
263  r = xgauss(ngr)
264  wr = wgauss(ngr)
265 !---------------------------------- 4 point gaussian integration in s -----
266  do ngs = 1, 4
267  s = xgauss(ngs)
268  ws = wgauss(ngs)
269  call interpolation(2, xx(1, n1), xx(1, n2), xx(1, n3), xx(1, n4), &
270  r, s, x, xr, xs, xrs, xrr, xss)
271  call interpolation(2, yy(1, n1), yy(1, n2), yy(1, n3), yy(1, n4), &
272  r, s, y, yr, ys, yrs, yrr, yss)
273  call interpolation(2, psi(4 * (n1 - 1) + 1), psi(4 * (n2 - 1) &
274  + 1), psi(4 * (n3 - 1) + 1), psi(4 * (n4 - 1) + 1), r, s, ps, &
275  psr, pss, psrs, psrr, psss)
276  xjac = xr * ys - xs * yr
277  if (volume) then
278  major_radius = 1._r8 + eps * x
279  f_integral = f_integral + wr * ws * xjac * major_radius &
280  * twopi * func(a, x, xr, xs, yr, ys, ps, psr, f_dia)
281  else
282  f_integral = f_integral + wr * ws * xjac &
283  * func(a, x, xr, xs, yr, ys, ps, psr, f_dia)
284  end if
285  end do
286  end do
287 
288  end function integrate_over_hermite_element
289 
290 !---------------------------------------------------------------------------
291  function integrate_along_hermite_element(i, j, a, F_dia, func, theta) &
292  result(f_integral)
293 !---------------------------------------------------------------------------
294 ! This function integrates the quantity described by the function func along
295 ! the Hermite element with index i,j.
296 ! theta = .true. : surface integral (over flux surface)
297 ! = .false. : line integral (along flux surface)
298 !---------------------------------------------------------------------------
299  use mod_dat, only : eps
300  use mod_gauss
302  use mod_mesh
304  use mod_parameter, only : twopi
305 
306  implicit none
307 
308  integer(itm_i4), intent(in) :: i, j
309  real(r8), intent(in) :: a, f_dia
310  logical :: theta
311 
312  real(r8) :: f_integral
313 
314  real(r8) :: r, s, ws
315  real(r8) :: x, xr, xs, xrs, xrr, xss
316  real(r8) :: y, yr, ys, yrs, yrr, yss
317  real(r8) :: ps, psr, pss, psrs, psrr, psss
318  real(r8) :: xjac, dl, major_radius
319  integer(itm_i4) :: ngs
320  integer(itm_i4) :: nelm
321  integer(itm_i4) :: n1, n2, n3, n4
322 
323  real(r8), external:: func
324 
325  f_integral = 0._r8
326 
327  r = -1._r8
328  nelm = (i - 1) * (np - 1) + j
329  call set_node_number(nelm, n1, n2, n3, n4)
330 !---------------------------------- 4 point gaussian integration in s -----
331  do ngs = 1, 4
332  s = xgauss(ngs)
333  ws = wgauss(ngs)
334  call interpolation(2, xx(1, n1), xx(1, n2), xx(1, n3), xx(1, n4), &
335  r, s, x, xr, xs, xrs, xrr, xss)
336  call interpolation(2, yy(1, n1), yy(1, n2), yy(1, n3), yy(1, n4), &
337  r, s, y, yr, ys, yrs, yrr, yss)
338  call interpolation(2, psi(4 * (n1 - 1) + 1), psi(4 * (n2 - 1) &
339  + 1), psi(4 * (n3 - 1) + 1), psi(4 * (n4 - 1) + 1), r, s, ps, &
340  psr, pss, psrs, psrr, psss)
341  if (theta) then
342  xjac = xr * ys - xs * yr
343  major_radius = 1._r8 + eps * x
344 ! if (xjac /= 0._r8) then
345  f_integral = f_integral + ws * xjac * major_radius / abs(psr) &
346  * twopi * func(a, x, xr, xs, yr, ys, ps, psr, f_dia)
347 ! end if
348  else
349  dl = sqrt(xs**2 + ys**2)
350  f_integral = f_integral + ws * dl &
351  * func(a, x, xr, xs, yr, ys, ps, psr, f_dia)
352  end if
353  end do
354 
355  end function integrate_along_hermite_element
356 
357 !---------------------------------------------------------------------------
358  subroutine element_average(i, type, xaxis, a, F_dia, func, df, dl)
359 !---------------------------------------------------------------------------
360 ! This subroutine averages a quantity given by function func over the
361 ! Hermite elements with radial index i and returns the result in df plus
362 ! the corresponding line/area/volume elements in dl.
363 ! The averaging process depends on the type:
364 ! type = 'line' : line average in poloidal cross section
365 ! = 'area' : surface average over poloidal cross section between
366 ! two flux surfaces
367 ! = 'volume' : volume average between two flux surfaces
368 ! = 'theta' : average over surface area of a flux surface
369 !
370 ! Note that df and dl are ordered from axis to separatrix, i.e., psi is
371 ! not inverted!
372 ! xaxis is needed to extend the average to the magnetic axis (psi = 0)
373 ! The minus sign for the types 'area' and 'volume' account for the
374 ! fact that the Jacobian determinant XJAC is negative due to the orientation
375 ! of r (from separatrix towards axis)!
376 !---------------------------------------------------------------------------
377  use mod_helena_io, only : iu6
378  use mod_mesh, only : nr, np
379  use phys_functions, only : identity
380 
381  implicit none
382 
383  character(len = 6), intent(in) :: type
384  real(r8), intent(in) :: xaxis, a, f_dia
385  integer(itm_i4), intent(in) :: i
386 
387  real(r8) :: dl(np - 1), df(np - 1)
388 
389  real(r8) :: one = 1._r8, zero = 0._r8
390  integer(itm_i4) :: j
391 
392  real(r8), external :: func
393 
394 !-- no flux surface average possible on axis since dl = 0
395  if (i == 1) then
396  dl = 0._r8
397  do j = 1, np - 1
398  df(j) = func(a, xaxis, zero, zero, zero, zero, zero, zero, f_dia)
399  end do
400  else
401  do j = 1, np - 1
402 !-- elements in HELENA are ordered in inverse radial direction, i.e.,
403 ! psi(nr - 1) = 1, psi(1) = 0
404  select case (trim(type))
405  case ('line')
406  dl(j) = integrate_along_hermite_element(nr + 1 - i, j, a, &
407  f_dia, identity, theta = .false.)
408  df(j) = integrate_along_hermite_element(nr + 1 - i, j, a, &
409  f_dia, func, theta = .false.)
410  case ('area')
411  dl(j) = -integrate_over_hermite_element(nr + 1 - i, j, a, &
412  f_dia, identity, volume = .false.)
413  df(j) = -integrate_over_hermite_element(nr + 1 - i, j, a, &
414  f_dia, func, volume = .false.)
415  case ('volume')
416  dl(j) = -integrate_over_hermite_element(nr + 1 - i, j, a, &
417  f_dia, identity, volume = .true.)
418  df(j) = -integrate_over_hermite_element(nr + 1 - i, j, a, &
419  f_dia, func, volume = .true.)
420  case ('theta')
421  dl(j) = integrate_along_hermite_element(nr + 1 - i, j, a, &
422  f_dia, identity, theta = .true.)
423  df(j) = integrate_along_hermite_element(nr + 1 - i, j, a, &
424  f_dia, func, theta = .true.)
425  case default
426  write(iu6, *) 'ERROR: wrong type of averaging parameter!'
427  stop
428  end select
429  df(j) = df(j) / dl(j)
430  end do
431  end if
432 
433  end subroutine element_average
434 
435 !---------------------------------------------------------------------------
436  function flux_surface_average(i, xaxis, a, F_dia, type, func) &
437  result(f_average)
438 !---------------------------------------------------------------------------
439 ! This function averages a quantity given by function func over the flux
440 ! surface with radial index i and returns the result in f_average.
441 ! The averaging process depends on the type:
442 ! type = 'line' : line average in poloidal cross section
443 ! = 'area' : surface average over poloidal cross section between
444 ! two flux surfaces
445 ! = 'volume' : volume average between two flux surfaces
446 ! = 'theta' : average over surface area of a flux surface
447 !---------------------------------------------------------------------------
448  use mod_mesh, only : np
449 
450  implicit none
451 
452  character(len = 6), intent(in) :: type
453  real(r8), intent(in) :: xaxis, a, f_dia
454  integer(itm_i4), intent(in) :: i
455 
456  real(r8) :: f_average
457 
458  real(r8) :: dl(np - 1), df(np - 1)
459  real(r8) :: dl_total
460  integer(itm_i4) :: j
461 
462  real(r8), external:: func
463 
464 !-- initialize dl and df
465  dl = 0._r8
466  df = 0._r8
467 
468  dl_total = 0._r8
469  f_average = 0._r8
470 
471  call element_average(i, type, xaxis, a, f_dia, func, df, dl)
472 
473  do j = 1, np - 1
474  dl_total = dl_total + dl(j)
475  f_average = f_average + df(j) * dl(j)
476  end do
477 
478 !-- average on axis = original value on axis
479  if (i == 1) then
480  f_average = df(1)
481  else
482 !-- average over flux surface i
483  f_average = f_average / dl_total
484  end if
485 
486  end function flux_surface_average
487 
488 !---------------------------------------------------------------------------
489  subroutine quad_equation(p_m, p_mr, p_p, p_pr, tol, r, ifail)
490 !---------------------------------------------------------------------------
491 ! this subroutine solves a quadratic equation
492 !---------------------------------------------------------------------------
493 
494  implicit none
495 
496  real(r8), intent(in) :: p_m, p_mr, p_p, p_pr, tol
497  real(r8), intent(out) :: r
498  integer(itm_i4), intent(out) :: ifail
499 
500  real(r8) :: a, b, c, d
501 
502  ifail = 0
503  a = 3._r8 * (p_m + p_mr - p_p + p_pr ) / 4._r8
504  b = (-p_mr + p_pr ) / 2._r8
505  c = (-3._r8 * p_m - p_mr + 3._r8 * p_p - p_pr) / 4._r8
506  d = b * b - 4._r8 * a * c
507 
508  if (d > 0.) then
509  r = root(a, b, c, d, 1._r8)
510  if (abs(r) > tol) r = root(a, b, c, d, -1._r8)
511  else
512  r = 999._r8
513  ifail = 1
514  end if
515 
516  return
517  end subroutine quad_equation
518 
519 end module math_functions
subroutine zero(x1, y1, x2, y2, func, err, x, y, izero, ll)
Definition: zero.f90:1
real(r8) function, dimension(n), public integrate(f_spline, x, n, inv)
subroutine, public equidistant_profile(f, x, f_equi, x_equi)
subroutine interpolation(type_interp, xn1, xn2, xn3, xn4, r, s, x, xr, xs, xrs, xrr, xss, yn1, yn2, yn3, yn4, pn1, pn2, pn3, pn4, yr, ys, ps)
subroutine allocate_spline_coefficients(spline, n)
subroutine spline(N, X, Y, ALFA, BETA, TYP, A, B, C, D)
Definition: solution6.f90:655
REAL *8 function spwert(N, XWERT, A, B, C, D, X, ABLTG)
Definition: solution6.f90:155
real(r8) function, public flux_surface_average(i, xaxis, a, F_dia, type, func)
subroutine, public quad_equation(p_m, p_mr, p_p, p_pr, tol, r, ifail)
subroutine, public element_average(i, type, xaxis, a, F_dia, func, df, dl)
subroutine deallocate_spline_coefficients(spline)
real(r8) function, public root(a, b, c, d, sgn)
real(r8) function identity(a, x, xr, xs, yr, ys, psi, psir, F_dia)
subroutine set_node_number(n_node, n1, n2, n3, n4)
real(r8) function integrate_1d(f, x, x_low, x_high, sum)
subroutine integral(n, h, r, f, int)
Definition: solution2.f90:527