ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
splev.f
Go to the documentation of this file.
1  subroutine splev(t,n,c,k,x,y,m,ier)
2  implicit none
3 c subroutine splev evaluates in a number of points x(i),i=1,2,...,m
4 c a spline s(x) of degree k, given in its b-spline representation.
5 c
6 c calling sequence:
7 c call splev(t,n,c,k,x,y,m,ier)
8 c
9 c input parameters:
10 c t : array,length n, which contains the position of the knots.
11 c n : integer, giving the total number of knots of s(x).
12 c c : array,length n, which contains the b-spline coefficients.
13 c k : integer, giving the degree of s(x).
14 c x : array,length m, which contains the points where s(x) must
15 c be evaluated.
16 c m : integer, giving the number of points where s(x) must be
17 c evaluated.
18 c
19 c output parameter:
20 c y : array,length m, giving the value of s(x) at the different
21 c points.
22 c ier : error flag
23 c ier = 0 : normal return
24 c ier =10 : invalid input data (see restrictions)
25 c
26 c restrictions:
27 c m >= 1
28 c t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
29 c
30 c other subroutines required: fpbspl.
31 c
32 c references :
33 c de boor c : on calculating with b-splines, j. approximation theory
34 c 6 (1972) 50-62.
35 c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
36 c applics 10 (1972) 134-149.
37 c dierckx p. : curve and surface fitting with splines, monographs on
38 c numerical analysis, oxford university press, 1993.
39 c
40 c author :
41 c p.dierckx
42 c dept. computer science, k.u.leuven
43 c celestijnenlaan 200a, b-3001 heverlee, belgium.
44 c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
45 c
46 c latest update : march 1987
47 c
48 c ..scalar arguments..
49  integer n,k,m,ier
50 c ..array arguments..
51  real*8 t(n),c(n),x(m),y(m)
52 c ..local scalars..
53  integer i,j,k1,l,ll,l1,nk1
54  real*8 arg,sp,tb,te
55 c ..local array..
56  real*8 h(6)
57 c ..
58 c before starting computations a data check is made. if the input data
59 c are invalid control is immediately repassed to the calling program.
60  ier = 10
61  if(m-1) 100,30,10
62  10 do 20 i=2,m
63  if(x(i).lt.x(i-1)) go to 100
64  20 continue
65  30 ier = 0
66 c fetch tb and te, the boundaries of the approximation interval.
67  k1 = k+1
68  nk1 = n-k1
69  tb = t(k1)
70  te = t(nk1+1)
71  l = k1
72  l1 = l+1
73 c main loop for the different points.
74  do 80 i=1,m
75 c fetch a new x-value arg.
76  arg = x(i)
77  if(arg.lt.tb) arg = tb
78  if(arg.gt.te) arg = te
79 c search for knot interval t(l) <= arg < t(l+1)
80  40 if(arg.lt.t(l1) .or. l.eq.nk1) go to 50
81  l = l1
82  l1 = l+1
83  go to 40
84 c evaluate the non-zero b-splines at arg.
85  50 call fpbspl(t,n,k,arg,l,h)
86 c find the value of s(x) at x=arg.
87  sp = 0.
88  ll = l-k1
89  do 60 j=1,k1
90  ll = ll+1
91  sp = sp+c(ll)*h(j)
92  60 continue
93  y(i) = sp
94  80 continue
95  100 return
96  end
subroutine splev(t, n, c, k, x, y, m, ier)
Definition: splev.f:1
subroutine fpbspl(t, n, k, x, l, h)
Definition: fpbspl.f:1