ETS  \$Id: Doxyfile 2162 2020-02-26 14:16:09Z g2dpc $
 All Classes Files Functions Variables Pages
fpsurf.f
Go to the documentation of this file.
1  subroutine fpsurf(iopt,m,x,y,z,w,xb,xe,yb,ye,kxx,kyy,s,nxest,
2  * nyest,eta,tol,maxit,nmax,km1,km2,ib1,ib3,nc,intest,nrest,
3  * nx0,tx,ny0,ty,c,fp,fp0,fpint,coord,f,ff,a,q,bx,by,spx,spy,h,
4  * index,nummer,wrk,lwrk,ier)
5  implicit none
6 c ..
7 c ..scalar arguments..
8  real*8 xb,xe,yb,ye,s,eta,tol,fp,fp0
9  integer iopt,m,kxx,kyy,nxest,nyest,maxit,nmax,km1,km2,ib1,ib3,
10  * nc,intest,nrest,nx0,ny0,lwrk,ier
11 c ..array arguments..
12  real*8 x(m),y(m),z(m),w(m),tx(nmax),ty(nmax),c(nc),fpint(intest),
13  * coord(intest),f(nc),ff(nc),a(nc,ib1),q(nc,ib3),bx(nmax,km2),
14  * by(nmax,km2),spx(m,km1),spy(m,km1),h(ib3),wrk(lwrk)
15  integer index(nrest),nummer(m)
16 c ..local scalars..
17  real*8 acc,arg,cos,dmax,fac1,fac2,fpmax,fpms,f1,f2,f3,hxi,p,pinv,
18  * piv,p1,p2,p3,sigma,sin,sq,store,wi,x0,x1,y0,y1,zi,eps,
19  * rn,one,con1,con9,con4,half,ten
20  integer i,iband,iband1,iband3,iband4,ibb,ichang,ich1,ich3,ii,
21  * in,irot,iter,i1,i2,i3,j,jrot,jxy,j1,kx,kx1,kx2,ky,ky1,ky2,l,
22  * la,lf,lh,lwest,lx,ly,l1,l2,n,ncof,nk1x,nk1y,nminx,nminy,nreg,
23  * nrint,num,num1,nx,nxe,nxx,ny,nye,nyy,n1,rank
24 c ..local arrays..
25  real*8 hx(6),hy(6)
26 c ..function references..
27  real*8 abs,fprati,sqrt
28  integer min0
29 c ..subroutine references..
30 c fpback,fpbspl,fpgivs,fpdisc,fporde,fprank,fprota
31 c ..
32 c set constants
33  one = 0.1d+01
34  con1 = 0.1d0
35  con9 = 0.9d0
36  con4 = 0.4d-01
37  half = 0.5d0
38  ten = 0.1d+02
39 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
40 c part 1: determination of the number of knots and their position. c
41 c **************************************************************** c
42 c given a set of knots we compute the least-squares spline sinf(x,y), c
43 c and the corresponding weighted sum of squared residuals fp=f(p=inf). c
44 c if iopt=-1 sinf(x,y) is the requested approximation. c
45 c if iopt=0 or iopt=1 we check whether we can accept the knots: c
46 c if fp <=s we will continue with the current set of knots. c
47 c if fp > s we will increase the number of knots and compute the c
48 c corresponding least-squares spline until finally fp<=s. c
49 c the initial choice of knots depends on the value of s and iopt. c
50 c if iopt=0 we first compute the least-squares polynomial of degree c
51 c kx in x and ky in y; nx=nminx=2*kx+2 and ny=nminy=2*ky+2. c
52 c fp0=f(0) denotes the corresponding weighted sum of squared c
53 c residuals c
54 c if iopt=1 we start with the knots found at the last call of the c
55 c routine, except for the case that s>=fp0; then we can compute c
56 c the least-squares polynomial directly. c
57 c eventually the independent variables x and y (and the corresponding c
58 c parameters) will be switched if this can reduce the bandwidth of the c
59 c system to be solved. c
60 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
61 c ichang denotes whether(1) or not(-1) the directions have been inter-
62 c changed.
63  ichang = -1
64  x0 = xb
65  x1 = xe
66  y0 = yb
67  y1 = ye
68  kx = kxx
69  ky = kyy
70  kx1 = kx+1
71  ky1 = ky+1
72  nxe = nxest
73  nye = nyest
74  eps = sqrt(eta)
75  if(iopt.lt.0) go to 20
76 c calculation of acc, the absolute tolerance for the root of f(p)=s.
77  acc = tol*s
78  if(iopt.eq.0) go to 10
79  if(fp0.gt.s) go to 20
80 c initialization for the least-squares polynomial.
81  10 nminx = 2*kx1
82  nminy = 2*ky1
83  nx = nminx
84  ny = nminy
85  ier = -2
86  go to 30
87  20 nx = nx0
88  ny = ny0
89 c main loop for the different sets of knots. m is a save upper bound
90 c for the number of trials.
91  30 do 420 iter=1,m
92 c find the position of the additional knots which are needed for the
93 c b-spline representation of s(x,y).
94  l = nx
95  do 40 i=1,kx1
96  tx(i) = x0
97  tx(l) = x1
98  l = l-1
99  40 continue
100  l = ny
101  do 50 i=1,ky1
102  ty(i) = y0
103  ty(l) = y1
104  l = l-1
105  50 continue
106 c find nrint, the total number of knot intervals and nreg, the number
107 c of panels in which the approximation domain is subdivided by the
108 c intersection of knots.
109  nxx = nx-2*kx1+1
110  nyy = ny-2*ky1+1
111  nrint = nxx+nyy
112  nreg = nxx*nyy
113 c find the bandwidth of the observation matrix a.
114 c if necessary, interchange the variables x and y, in order to obtain
115 c a minimal bandwidth.
116  iband1 = kx*(ny-ky1)+ky
117  l = ky*(nx-kx1)+kx
118  if(iband1.le.l) go to 130
119  iband1 = l
120  ichang = -ichang
121  do 60 i=1,m
122  store = x(i)
123  x(i) = y(i)
124  y(i) = store
125  60 continue
126  store = x0
127  x0 = y0
128  y0 = store
129  store = x1
130  x1 = y1
131  y1 = store
132  n = min0(nx,ny)
133  do 70 i=1,n
134  store = tx(i)
135  tx(i) = ty(i)
136  ty(i) = store
137  70 continue
138  n1 = n+1
139  if(nx-ny) 80,120,100
140  80 do 90 i=n1,ny
141  tx(i) = ty(i)
142  90 continue
143  go to 120
144  100 do 110 i=n1,nx
145  ty(i) = tx(i)
146  110 continue
147  120 l = nx
148  nx = ny
149  ny = l
150  l = nxe
151  nxe = nye
152  nye = l
153  l = nxx
154  nxx = nyy
155  nyy = l
156  l = kx
157  kx = ky
158  ky = l
159  kx1 = kx+1
160  ky1 = ky+1
161  130 iband = iband1+1
162 c arrange the data points according to the panel they belong to.
163  call fporde(x,y,m,kx,ky,tx,nx,ty,ny,nummer,index,nreg)
164 c find ncof, the number of b-spline coefficients.
165  nk1x = nx-kx1
166  nk1y = ny-ky1
167  ncof = nk1x*nk1y
168 c initialize the observation matrix a.
169  do 140 i=1,ncof
170  f(i) = 0.
171  do 140 j=1,iband
172  a(i,j) = 0.0d0
173  140 continue
174 c initialize the sum of squared residuals.
175  fp = 0.
176 c fetch the data points in the new order. main loop for the
177 c different panels.
178  do 250 num=1,nreg
179 c fix certain constants for the current panel; jrot records the column
180 c number of the first non-zero element in a row of the observation
181 c matrix according to a data point of the panel.
182  num1 = num-1
183  lx = num1/nyy
184  l1 = lx+kx1
185  ly = num1-lx*nyy
186  l2 = ly+ky1
187  jrot = lx*nk1y+ly
188 c test whether there are still data points in the panel.
189  in = index(num)
190  150 if(in.eq.0) go to 250
191 c fetch a new data point.
192  wi = w(in)
193  zi = z(in)*wi
194 c evaluate for the x-direction, the (kx+1) non-zero b-splines at x(in).
195  call fpbspl(tx,nx,kx,x(in),l1,hx)
196 c evaluate for the y-direction, the (ky+1) non-zero b-splines at y(in).
197  call fpbspl(ty,ny,ky,y(in),l2,hy)
198 c store the value of these b-splines in spx and spy respectively.
199  do 160 i=1,kx1
200  spx(in,i) = hx(i)
201  160 continue
202  do 170 i=1,ky1
203  spy(in,i) = hy(i)
204  170 continue
205 c initialize the new row of observation matrix.
206  do 180 i=1,iband
207  h(i) = 0.0d0
208  180 continue
209 c calculate the non-zero elements of the new row by making the cross
210 c products of the non-zero b-splines in x- and y-direction.
211  i1 = 0
212  do 200 i=1,kx1
213  hxi = hx(i)
214  j1 = i1
215  do 190 j=1,ky1
216  j1 = j1+1
217  h(j1) = hxi*hy(j)*wi
218  190 continue
219  i1 = i1+nk1y
220  200 continue
221 c rotate the row into triangle by givens transformations .
222  irot = jrot
223  do 220 i=1,iband
224  irot = irot+1
225  piv = h(i)
226  if(piv.eq.0.0d0) go to 220
227 c calculate the parameters of the givens transformation.
228  call fpgivs(piv,a(irot,1),cos,sin)
229 c apply that transformation to the right hand side.
230  call fprota(cos,sin,zi,f(irot))
231  if(i.eq.iband) go to 230
232 c apply that transformation to the left hand side.
233  i2 = 1
234  i3 = i+1
235  do 210 j=i3,iband
236  i2 = i2+1
237  call fprota(cos,sin,h(j),a(irot,i2))
238  210 continue
239  220 continue
240 c add the contribution of the row to the sum of squares of residual
241 c right hand sides.
242  230 fp = fp+zi**2
243 c find the number of the next data point in the panel.
244  240 in = nummer(in)
245  go to 150
246  250 continue
247 c find dmax, the maximum value for the diagonal elements in the reduced
248 c triangle.
249  dmax = 0.
250  do 260 i=1,ncof
251  if(a(i,1).le.dmax) go to 260
252  dmax = a(i,1)
253  260 continue
254 c check whether the observation matrix is rank deficient.
255  sigma = eps*dmax
256  do 270 i=1,ncof
257  if(a(i,1).le.sigma) go to 280
258  270 continue
259 c backward substitution in case of full rank.
260  call fpback(a,f,ncof,iband,c,nc)
261  rank = ncof
262  do 275 i=1,ncof
263  q(i,1) = a(i,1)/dmax
264  275 continue
265  go to 300
266 c in case of rank deficiency, find the minimum norm solution.
267 c check whether there is sufficient working space
268  280 lwest = ncof*iband+ncof+iband
269  if(lwrk.lt.lwest) go to 780
270  do 290 i=1,ncof
271  ff(i) = f(i)
272  do 290 j=1,iband
273  q(i,j) = a(i,j)
274  290 continue
275  lf =1
276  lh = lf+ncof
277  la = lh+iband
278  call fprank(q,ff,ncof,iband,nc,sigma,c,sq,rank,wrk(la),
279  * wrk(lf),wrk(lh))
280  do 295 i=1,ncof
281  q(i,1) = q(i,1)/dmax
282  295 continue
283 c add to the sum of squared residuals, the contribution of reducing
284 c the rank.
285  fp = fp+sq
286  300 if(ier.eq.(-2)) fp0 = fp
287 c test whether the least-squares spline is an acceptable solution.
288  if(iopt.lt.0) go to 820
289  fpms = fp-s
290  if(abs(fpms).le.acc) if(fp) 815,815,820
291 c test whether we can accept the choice of knots.
292  if(fpms.lt.0.) go to 430
293 c test whether we cannot further increase the number of knots.
294  if(ncof.gt.m) go to 790
295  ier = 0
296 c search where to add a new knot.
297 c find for each interval the sum of squared residuals fpint for the
298 c data points having the coordinate belonging to that knot interval.
299 c calculate also coord which is the same sum, weighted by the position
300 c of the data points considered.
301  310 do 320 i=1,nrint
302  fpint(i) = 0.
303  coord(i) = 0.
304  320 continue
305  do 360 num=1,nreg
306  num1 = num-1
307  lx = num1/nyy
308  l1 = lx+1
309  ly = num1-lx*nyy
310  l2 = ly+1+nxx
311  jrot = lx*nk1y+ly
312  in = index(num)
313  330 if(in.eq.0) go to 360
314  store = 0.
315  i1 = jrot
316  do 350 i=1,kx1
317  hxi = spx(in,i)
318  j1 = i1
319  do 340 j=1,ky1
320  j1 = j1+1
321  store = store+hxi*spy(in,j)*c(j1)
322  340 continue
323  i1 = i1+nk1y
324  350 continue
325  store = (w(in)*(z(in)-store))**2
326  fpint(l1) = fpint(l1)+store
327  coord(l1) = coord(l1)+store*x(in)
328  fpint(l2) = fpint(l2)+store
329  coord(l2) = coord(l2)+store*y(in)
330  in = nummer(in)
331  go to 330
332  360 continue
333 c find the interval for which fpint is maximal on the condition that
334 c there still can be added a knot.
335  370 l = 0
336  fpmax = 0.
337  l1 = 1
338  l2 = nrint
339  if(nx.eq.nxe) l1 = nxx+1
340  if(ny.eq.nye) l2 = nxx
341  if(l1.gt.l2) go to 810
342  do 380 i=l1,l2
343  if(fpmax.ge.fpint(i)) go to 380
344  l = i
345  fpmax = fpint(i)
346  380 continue
347 c test whether we cannot further increase the number of knots.
348  if(l.eq.0) go to 785
349 c calculate the position of the new knot.
350  arg = coord(l)/fpint(l)
351 c test in what direction the new knot is going to be added.
352  if(l.gt.nxx) go to 400
353 c addition in the x-direction.
354  jxy = l+kx1
355  fpint(l) = 0.
356  fac1 = tx(jxy)-arg
357  fac2 = arg-tx(jxy-1)
358  if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 370
359  j = nx
360  do 390 i=jxy,nx
361  tx(j+1) = tx(j)
362  j = j-1
363  390 continue
364  tx(jxy) = arg
365  nx = nx+1
366  go to 420
367 c addition in the y-direction.
368  400 jxy = l+ky1-nxx
369  fpint(l) = 0.
370  fac1 = ty(jxy)-arg
371  fac2 = arg-ty(jxy-1)
372  if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 370
373  j = ny
374  do 410 i=jxy,ny
375  ty(j+1) = ty(j)
376  j = j-1
377  410 continue
378  ty(jxy) = arg
379  ny = ny+1
380 c restart the computations with the new set of knots.
381  420 continue
382 c test whether the least-squares polynomial is a solution of our
383 c approximation problem.
384  430 if(ier.eq.(-2)) go to 830
385 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
386 c part 2: determination of the smoothing spline sp(x,y) c
387 c ***************************************************** c
388 c we have determined the number of knots and their position. we now c
389 c compute the b-spline coefficients of the smoothing spline sp(x,y). c
390 c the observation matrix a is extended by the rows of a matrix, c
391 c expressing that sp(x,y) must be a polynomial of degree kx in x and c
392 c ky in y. the corresponding weights of these additional rows are set c
393 c to 1./p. iteratively we than have to determine the value of p c
394 c such that f(p)=sum((w(i)*(z(i)-sp(x(i),y(i))))**2) be = s. c
395 c we already know that the least-squares polynomial corresponds to c
396 c p=0 and that the least-squares spline corresponds to p=infinity. c
397 c the iteration process which is proposed here makes use of rational c
398 c interpolation. since f(p) is a convex and strictly decreasing c
399 c function of p, it can be approximated by a rational function r(p)= c
400 c (u*p+v)/(p+w). three values of p(p1,p2,p3) with corresponding values c
401 c of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used to calculate the c
402 c new value of p such that r(p)=s. convergence is guaranteed by taking c
403 c f1 > 0 and f3 < 0. c
404 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
405  kx2 = kx1+1
406 c test whether there are interior knots in the x-direction.
407  if(nk1x.eq.kx1) go to 440
408 c evaluate the discotinuity jumps of the kx-th order derivative of
409 c the b-splines at the knots tx(l),l=kx+2,...,nx-kx-1.
410  call fpdisc(tx,nx,kx2,bx,nmax)
411  440 ky2 = ky1 + 1
412 c test whether there are interior knots in the y-direction.
413  if(nk1y.eq.ky1) go to 450
414 c evaluate the discontinuity jumps of the ky-th order derivative of
415 c the b-splines at the knots ty(l),l=ky+2,...,ny-ky-1.
416  call fpdisc(ty,ny,ky2,by,nmax)
417 c initial value for p.
418  450 p1 = 0.
419  f1 = fp0-s
420  p3 = -one
421  f3 = fpms
422  p = 0.
423  do 460 i=1,ncof
424  p = p+a(i,1)
425  460 continue
426  rn = ncof
427  p = rn/p
428 c find the bandwidth of the extended observation matrix.
429  iband3 = kx1*nk1y
430  iband4 = iband3 +1
431  ich1 = 0
432  ich3 = 0
433 c iteration process to find the root of f(p)=s.
434  do 770 iter=1,maxit
435  pinv = one/p
436 c store the triangularized observation matrix into q.
437  do 480 i=1,ncof
438  ff(i) = f(i)
439  do 470 j=1,iband
440  q(i,j) = a(i,j)
441  470 continue
442  ibb = iband+1
443  do 480 j=ibb,iband4
444  q(i,j) = 0.
445  480 continue
446  if(nk1y.eq.ky1) go to 560
447 c extend the observation matrix with the rows of a matrix, expressing
448 c that for x=cst. sp(x,y) must be a polynomial in y of degree ky.
449  do 550 i=ky2,nk1y
450  ii = i-ky1
451  do 550 j=1,nk1x
452 c initialize the new row.
453  do 490 l=1,iband
454  h(l) = 0.
455  490 continue
456 c fill in the non-zero elements of the row. jrot records the column
457 c number of the first non-zero element in the row.
458  do 500 l=1,ky2
459  h(l) = by(ii,l)*pinv
460  500 continue
461  zi = 0.
462  jrot = (j-1)*nk1y+ii
463 c rotate the new row into triangle by givens transformations without
464 c square roots.
465  do 540 irot=jrot,ncof
466  piv = h(1)
467  i2 = min0(iband1,ncof-irot)
468  if(piv.eq.0.) if(i2) 550,550,520
469 c calculate the parameters of the givens transformation.
470  call fpgivs(piv,q(irot,1),cos,sin)
471 c apply that givens transformation to the right hand side.
472  call fprota(cos,sin,zi,ff(irot))
473  if(i2.eq.0) go to 550
474 c apply that givens transformation to the left hand side.
475  do 510 l=1,i2
476  l1 = l+1
477  call fprota(cos,sin,h(l1),q(irot,l1))
478  510 continue
479  520 do 530 l=1,i2
480  h(l) = h(l+1)
481  530 continue
482  h(i2+1) = 0.
483  540 continue
484  550 continue
485  560 if(nk1x.eq.kx1) go to 640
486 c extend the observation matrix with the rows of a matrix expressing
487 c that for y=cst. sp(x,y) must be a polynomial in x of degree kx.
488  do 630 i=kx2,nk1x
489  ii = i-kx1
490  do 630 j=1,nk1y
491 c initialize the new row
492  do 570 l=1,iband4
493  h(l) = 0.
494  570 continue
495 c fill in the non-zero elements of the row. jrot records the column
496 c number of the first non-zero element in the row.
497  j1 = 1
498  do 580 l=1,kx2
499  h(j1) = bx(ii,l)*pinv
500  j1 = j1+nk1y
501  580 continue
502  zi = 0.
503  jrot = (i-kx2)*nk1y+j
504 c rotate the new row into triangle by givens transformations .
505  do 620 irot=jrot,ncof
506  piv = h(1)
507  i2 = min0(iband3,ncof-irot)
508  if(piv.eq.0.) if(i2) 630,630,600
509 c calculate the parameters of the givens transformation.
510  call fpgivs(piv,q(irot,1),cos,sin)
511 c apply that givens transformation to the right hand side.
512  call fprota(cos,sin,zi,ff(irot))
513  if(i2.eq.0) go to 630
514 c apply that givens transformation to the left hand side.
515  do 590 l=1,i2
516  l1 = l+1
517  call fprota(cos,sin,h(l1),q(irot,l1))
518  590 continue
519  600 do 610 l=1,i2
520  h(l) = h(l+1)
521  610 continue
522  h(i2+1) = 0.
523  620 continue
524  630 continue
525 c find dmax, the maximum value for the diagonal elements in the
526 c reduced triangle.
527  640 dmax = 0.
528  do 650 i=1,ncof
529  if(q(i,1).le.dmax) go to 650
530  dmax = q(i,1)
531  650 continue
532 c check whether the matrix is rank deficient.
533  sigma = eps*dmax
534  do 660 i=1,ncof
535  if(q(i,1).le.sigma) go to 670
536  660 continue
537 c backward substitution in case of full rank.
538  call fpback(q,ff,ncof,iband4,c,nc)
539  rank = ncof
540  go to 675
541 c in case of rank deficiency, find the minimum norm solution.
542  670 lwest = ncof*iband4+ncof+iband4
543  if(lwrk.lt.lwest) go to 780
544  lf = 1
545  lh = lf+ncof
546  la = lh+iband4
547  call fprank(q,ff,ncof,iband4,nc,sigma,c,sq,rank,wrk(la),
548  * wrk(lf),wrk(lh))
549  675 do 680 i=1,ncof
550  q(i,1) = q(i,1)/dmax
551  680 continue
552 c compute f(p).
553  fp = 0.
554  do 720 num = 1,nreg
555  num1 = num-1
556  lx = num1/nyy
557  ly = num1-lx*nyy
558  jrot = lx*nk1y+ly
559  in = index(num)
560  690 if(in.eq.0) go to 720
561  store = 0.
562  i1 = jrot
563  do 710 i=1,kx1
564  hxi = spx(in,i)
565  j1 = i1
566  do 700 j=1,ky1
567  j1 = j1+1
568  store = store+hxi*spy(in,j)*c(j1)
569  700 continue
570  i1 = i1+nk1y
571  710 continue
572  fp = fp+(w(in)*(z(in)-store))**2
573  in = nummer(in)
574  go to 690
575  720 continue
576 c test whether the approximation sp(x,y) is an acceptable solution.
577  fpms = fp-s
578  if(abs(fpms).le.acc) go to 820
579 c test whether the maximum allowable number of iterations has been
580 c reached.
581  if(iter.eq.maxit) go to 795
582 c carry out one more step of the iteration process.
583  p2 = p
584  f2 = fpms
585  if(ich3.ne.0) go to 740
586  if((f2-f3).gt.acc) go to 730
587 c our initial choice of p is too large.
588  p3 = p2
589  f3 = f2
590  p = p*con4
591  if(p.le.p1) p = p1*con9 + p2*con1
592  go to 770
593  730 if(f2.lt.0.) ich3 = 1
594  740 if(ich1.ne.0) go to 760
595  if((f1-f2).gt.acc) go to 750
596 c our initial choice of p is too small
597  p1 = p2
598  f1 = f2
599  p = p/con4
600  if(p3.lt.0.) go to 770
601  if(p.ge.p3) p = p2*con1 + p3*con9
602  go to 770
603  750 if(f2.gt.0.) ich1 = 1
604 c test whether the iteration process proceeds as theoretically
605 c expected.
606  760 if(f2.ge.f1 .or. f2.le.f3) go to 800
607 c find the new value of p.
608  p = fprati(p1,f1,p2,f2,p3,f3)
609  770 continue
610 c error codes and messages.
611  780 ier = lwest
612  go to 830
613  785 ier = 5
614  go to 830
615  790 ier = 4
616  go to 830
617  795 ier = 3
618  go to 830
619  800 ier = 2
620  go to 830
621  810 ier = 1
622  go to 830
623  815 ier = -1
624  fp = 0.
625  820 if(ncof.ne.rank) ier = -rank
626 c test whether x and y are in the original order.
627  830 if(ichang.lt.0) go to 930
628 c if not, interchange x and y once more.
629  l1 = 1
630  do 840 i=1,nk1x
631  l2 = i
632  do 840 j=1,nk1y
633  f(l2) = c(l1)
634  l1 = l1+1
635  l2 = l2+nk1x
636  840 continue
637  do 850 i=1,ncof
638  c(i) = f(i)
639  850 continue
640  do 860 i=1,m
641  store = x(i)
642  x(i) = y(i)
643  y(i) = store
644  860 continue
645  n = min0(nx,ny)
646  do 870 i=1,n
647  store = tx(i)
648  tx(i) = ty(i)
649  ty(i) = store
650  870 continue
651  n1 = n+1
652  if(nx-ny) 880,920,900
653  880 do 890 i=n1,ny
654  tx(i) = ty(i)
655  890 continue
656  go to 920
657  900 do 910 i=n1,nx
658  ty(i) = tx(i)
659  910 continue
660  920 l = nx
661  nx = ny
662  ny = l
663  930 if(iopt.lt.0) go to 940
664  nx0 = nx
665  ny0 = ny
666  940 return
667  end
668 
subroutine fpdisc(t, n, k2, b, nest)
Definition: fpdisc.f:1
subroutine fpsurf(iopt, m, x, y, z, w, xb, xe, yb, ye, kxx, kyy, s, nxest, nyest, eta, tol, maxit, nmax, km1, km2, ib1, ib3, nc, intest, nrest, nx0, tx, ny0, ty, c, fp, fp0, fpint, coord, f, ff, a, q, bx, by, spx, spy, h, index, nummer, wrk, lwrk, ier)
Definition: fpsurf.f:1
subroutine fprota(cos, sin, a, b)
Definition: fprota.f:1
real(r8) function p(a, x, xr, xs, yr, ys, psi, psir, F_dia)
subroutine fpback(a, z, n, k, c, nest)
Definition: fpback.f:1
subroutine fporde(x, y, m, kx, ky, tx, nx, ty, ny, nummer, index, nreg)
Definition: fporde.f:1
subroutine fprank(a, f, n, m, na, tol, c, sq, rank, aa, ff, h)
Definition: fprank.f:1
subroutine fpgivs(piv, ww, cos, sin)
Definition: fpgivs.f:1
real *8 function fprati(p1, f1, p2, f2, p3, f3)
Definition: fprati.f:1
subroutine fpbspl(t, n, k, x, l, h)
Definition: fpbspl.f:1